1. Backtesting Trading Strategies in Python - DEEP DIVE

    • Buy now
    • Learn more
  2. Welcome

    • Course overview
    • Python notebook for the course
  3. 1. Preparing financial data for backtesting

    • Resampling for different data frequencies
    • Filling financial data
  4. 2. Different types of backtests

    • Pandas backtest
    • Looping backtest
    • Vectorised backtest
  5. 3. Parameter sweeps to gain insights

    • An example -- sweeping different moving average windows
    • Defining a metric
    • Visualisation -- 3D plots
    • Visualisation -- contour plots
    • How to ensure our strategy also delivers for the future?
    • Assessing the best parameters -- are they viable trades?
  6. 4. Basics of portfolio optimisation

    • Varying asset weightings -- preparation
    • Randomising asset weightings
    • Finding the best asset weightings
    • Evaluating the performance of the optimised portfolio
  7. 5. Advanced analysis

    • Sortino ratio
    • CAGR (Compound Annual Growth Rate)
    • Beta
    • Monte Carlo simulation -- different return paths
    • Distribution of returns
    • Assessing the strategy further -- trimming the tails
  8. 6. Test your knowledge!

    • Exercises without answers
    • Exercises with answers
    • Explanations
  1. Products
  2. Course
  3. Section

3. Parameter sweeps to gain insights

  1. Backtesting Trading Strategies in Python - DEEP DIVE

    • Buy now
    • Learn more
  2. Welcome

    • Course overview
    • Python notebook for the course
  3. 1. Preparing financial data for backtesting

    • Resampling for different data frequencies
    • Filling financial data
  4. 2. Different types of backtests

    • Pandas backtest
    • Looping backtest
    • Vectorised backtest
  5. 3. Parameter sweeps to gain insights

    • An example -- sweeping different moving average windows
    • Defining a metric
    • Visualisation -- 3D plots
    • Visualisation -- contour plots
    • How to ensure our strategy also delivers for the future?
    • Assessing the best parameters -- are they viable trades?
  6. 4. Basics of portfolio optimisation

    • Varying asset weightings -- preparation
    • Randomising asset weightings
    • Finding the best asset weightings
    • Evaluating the performance of the optimised portfolio
  7. 5. Advanced analysis

    • Sortino ratio
    • CAGR (Compound Annual Growth Rate)
    • Beta
    • Monte Carlo simulation -- different return paths
    • Distribution of returns
    • Assessing the strategy further -- trimming the tails
  8. 6. Test your knowledge!

    • Exercises without answers
    • Exercises with answers
    • Explanations

6 Lessons
    • An example -- sweeping different moving average windows
    • Defining a metric
    • Visualisation -- 3D plots
    • Visualisation -- contour plots
    • How to ensure our strategy also delivers for the future?
    • Assessing the best parameters -- are they viable trades?